Early W primes at the LHC

Martin Schmaltz Christian Spethmann

Department of Physics Boston University

Santa Fe Workshop 2010 07/07/2010

Outline

- Constructing W primes for the early LHC
 - Introduction to W primes Why should we care?
 - What type of W primes do we consider?
 - Effective Lagrangian Approach to EWPC
- Discussion of Models
 - Isotriplet of Heavy Gauge Bosons
 - Left-Right Model with Bifundamental Higgs
 - LR Model with Single Higgs Doublet
- Odds and Ends

Why care about W primes?

LHC collisions at 7 Tev \Rightarrow Potential to discover new physics:

- GUTs
- UED
- Little Higgs
- **.** . . .

A large subset of BSM theories introduces new, massive gauge bosons \rightarrow observable at LHC? W's are promising candidates:

- Single particle resonance → Large cross section
- Low background in leptonic channels → Easy discovery
- Complete mass reconstruction in hadronic channnels (tb)

Z primes and W primes

Conventional wisdom: (e.g. PDG review on W primes)

"A generic property of all these gauge theories is that besides a W' they contain at least a Z' boson, whose mass is typically comparable or smaller than $M_{W'}$."

The usual conclusions:

- The strong bounds on Z' indirectly also apply to W'.
- Z's are likely to be found before W's.

Questions we want to answer:

- Is this argument unavoidable?
- What are the conditions for a light W' without a Z'?

Our definition of a (relevant) W' Boson

Focus is on early LHC physics

- \Rightarrow Define "interesting" W's as:
 - Electric charge
 - Massive (Tevatron: TeV scale)
 - 3 Spin 1 \Rightarrow gauge boson
 - Color-neutral
 - Coupled to LHC initial state
 - **1** Decay to $\ell\nu$ (and $t\bar{b}$)

This excludes:

- Heavy resonance decay to W'
- $W' \rightarrow EW$ gauge bosons

Restrictions from Initial State: $pp \rightarrow W'$

Producing a charged, color-singlet state from pp collision:

	99	$gq/gar{q}$	$qq/\bar{q}\bar{q}$	$q\bar{q}$
Color singlet?				
$Q=T_3+Y\neq 0?$				

List of Quark-Antiquark Couplings

Quark fields:

	color	$SU(2)_L$	Υ
Q	3	2	1/6
$\mathcal{U}^{C\dagger}$	3	1	2/3
$d^{c\dagger}$	3	1	-1/3

Antiquark fields:

	color	$SU(2)_L$	Υ
Q^{\dagger}	3	2	-1/6
u^c	3	1	-2/3
d^c	3	1	1/3

Color-neutral initial state operators with electric charge:

1 $Q^{\dagger}\sigma^{a}Q$: triplet, contains $Q=0,\pm 1$

- 1
- $(u^c)^{\dagger}d^c$ (and h.c.): singlet with charge ± 1

3 Qu^c , Qd^c : doublet with charge 0, ± 1

Begin Detour

Constraints On Weak Scale Effective Lagrangian

Effective theory approach to EWP and LEP II constraints:

- Find couplings of SM quarks, charged leptons, and Higgs boson to Z' boson
- Integrate out neutral currents
- Obtain coefficients of induced dimension 6 operators

EWP and LEP II Constraints - List of Experiments

Previous work by W. Skiba and Z. Han¹: EWP and LEP II constraints on 21 dimension 6 operators

- Atomic parity violation (Weak charge of Cs and TI)
- DIS (ν nucleon from NuTeV, CDHS, CHARM, CCFR, ν e from CHARM II)
- Z-pole (Z width, hadronic cross section, ratios of decay rates, FB asymmetries, hadronic charge asymmetries, polarized asymmetries)
- Fermion pair production at LEP II (total cross-sections and FB asymmetries in $e^+e^- \to f\bar{f}$, differential cross section for $e^+e^- \to e^+e^-$
- W mass, differential cross section for $e^+e^- \rightarrow W^+W^-$

¹Phys.Rev. D71 (2005) 075009

Four Fermion Operators

List of dimension six operators relevant for our discussion:

Four fermion singlet operators:

$$\mathcal{O}_{ff'}^s = (f^{\dagger} \bar{\sigma}_{\mu} f) (f'^{\dagger} \bar{\sigma}^{\mu} f')$$

(exchange of $SU(2)_L$ singlet Z')

Four fermion triplet operators:

$$\mathcal{O}^t_{\mathit{ff'}} = (\mathit{f}^\dagger ar{\sigma}_\mu \, \sigma^{\mathit{a}} \, \mathit{f}) \, (\mathit{f'}^\dagger ar{\sigma}^\mu \, \sigma^{\mathit{a}} \, \mathit{f'})$$

(exchange of $SU(2)_L$ triplet W'/Z')

Strongest bounds on four fermion operators → LEP II

Operators with Couplings to Higgs

Higgs-fermion operators:

$$\mathcal{O}_{hf} = i(h^{\dagger}D_{\mu} [\sigma^{a}] h) (f^{\dagger}\bar{\sigma}^{\mu} [\sigma^{a}] f)$$

Replace D_{μ} by Z boson and insert Higgs VEV

⇒ Generates mass splitting

between Z and W

(S parameter is not generated at tree level)

End Detour

W prime in $SU(2)_L$ Isotriplet

First scenario: $Q^{\dagger}\sigma^{a}Q$

e.g. Little Higgs, KK gauge bosons Symmetry breaking:

$$SU(2)_1 \times SU(2)_2 \rightarrow SU(2)_L$$

by VEV of bifundamental scalar

⇒ Isotriplet of heavy gauge bosons

- Mass splitting between Z' and W' small $(\Delta M \approx v^2/2f)$
- W', Z' coupling typically of order g
- Triplet 4 fermion operators, strong interference with SM W
- Custodial symmetry ⇒ no T parameter

Limits on W Primes with SU(2)_L Coupling

For $g_1 = g_2$, Higgs can be decoupled.

$$\Rightarrow \qquad \mathcal{L}_{\mathrm{eff}} = -rac{g^2}{8M_{W'}^2}\,\left(\mathcal{Q}^\dagger ar{\sigma}_\mu\,\sigma^a \mathcal{Q} \pm \mathcal{L}^\dagger ar{\sigma}_\mu\,\sigma^a \mathcal{L}
ight)^2$$

if Q, L doublets live in same(+) or opposite(-) SU(2)s.

$$\Rightarrow$$
 $M_{W'} \geq$ 3.3 TeV / 2.2 TeV

Cross sections for 2.2 TeV gauge bosons at the LHC (7 TeV):

$$\sigma(pp o Z' o e^+ e^-) pprox 1.5 ext{ fb}$$
 $\sigma(pp o W' o e
u) pprox 6 ext{ fb}$

 \Rightarrow Both Z' and W' out of reach of first run!

W prime in $SU(2)_L$ Singlet

Second scenario: $(u^c)^{\dagger}d^c$ + h.c.

- W' generator doesn't commute with hypercharge
- W' and $B \in broken non-Abelian gauge group$
- u^c and d^c belong to multiplet of this group

Simplest idea: $SU(2)_R \rightarrow U(1)_Y$

- W' with $Q = \pm 1$ and no Z'
- Incorrect fermion hypercharges $(\pm 1/2)$

• W' and Z', can adjust hypercharges

Fermion Charges in Left-Right Model

Charges of standard model fermions:

field	X	T_R^3	Y
Q	1/6	0	1/6
$\begin{pmatrix} d^c \\ u^c \end{pmatrix}$	-1/6	±1/2	$\begin{pmatrix} +1/3 \\ -2/3 \end{pmatrix}$
L	-1/2	0	-1/2
$\begin{pmatrix} e^c \\ u^c \end{pmatrix}$	1/2	±1/2	$\begin{pmatrix} +1 \\ 0 \end{pmatrix}$

- Left-right symmetry
- *U*(1) charges: B-L
- Anomaly free

Scalars in $SU(2)_L \times SU(2)_R \times U(1)_X$ Model

Need at least two scalars:

- First, to break $SU(2)_R \times U(1)_X$: $\Rightarrow SU(2)_R$ doublet with VEV $\langle \Phi \rangle = (0, f/\sqrt{2})$
- Then, to generate fermion masses:
 Complex bidoublet Higgs with charges
 (2,2)₀ and VEV

$$\langle H \rangle = v/\sqrt{2} \begin{pmatrix} \cos \beta & 0 \\ 0 & \sin \beta \end{pmatrix}$$

⇒ 2 Higgs doublets at EWSB scale

Effective Lagrangian with Higgs Bidoublet

• Gauge boson mixing:

$$Z'=c_rW_R^3-s_rX$$

Fermion couplings:

$$J_{Z'}^{\mu}(f) = \frac{1}{2} \sum_f f^{\dagger} \bar{\sigma}^{\mu} \left(g_r c_r T_R^3 - g_x s_r [B-L] \right) f,$$

Higgs coupling: Only VEV enters EW fit
 Higgs sector can be represented by single field

$$J_{Z'}^{\mu}(h) = c_r g_r \left[i(h^{\dagger} D^{\mu} h) + \text{h.c.} \right].$$

Exclusion Plot for LR Model with Higgs Bifundamental

- Higgs couples only to $SU(2)_R$
- EW precision favors large U(1) coupling constant
- Large mass splitting between Z' and W'

Model point with minimal W' mass at SM+2 σ :

$$M(W') \approx 1 \text{ TeV}$$

 $M(Z') \approx 2-3 \text{ TeV}$

The first two years at the LHC...

W' search

$$\sigma \times BR(e\nu) = 235 \text{ fb}$$

$$\sigma \times BR(tb) = 700 \text{ fb}$$

What to expect:

- First $W' \rightarrow e\nu$ event in September 2010 (10/pb)
- By February 2011: Clear signal (100/pb)
- LHC shutdown: (1/fb)
 W' mass, BRs measured
 to ±10 percent

Z' search

$$\sigma \times BR(e^+e^-) = 0.6$$
 fb

$$\sigma \times BR(t\overline{t}) = 0.1 \text{ fb}$$

Alternative Higgs sector in the LR Model

How can we give the Z' groups something to do?

- \Rightarrow Higgs doublet with non-zero "B-L" charge (X = 1/2)
 - T parameter and Z BRs: Favors small tan θ_r
 - Four fermion operators:
 Same as previous analysis
 - Optimal mixing angle:
 Much smaller than before

BUT: Z' BR to $\ell \bar{\ell}$ small

Disadvantage: Non-renormalizable Yukawa couplings.

Exclusion Plot For LR Model With Single Higgs

- Higgs couples only to $U(1)_X$
- EW precision favors small U(1) coupling constant
- Small mass splitting between Z' and W'

Model point with minimal W' mass at SM+2 σ :

$$M(W') \approx 1.1 \text{ TeV}$$

 $M(Z') \approx 1.4 \text{ TeV}$

What will the LHC find in this Case?

W' search

$$\sigma \times BR(e\nu) = 330 \text{ fb}$$

$$\sigma \times BR(tb) = 1 \text{ pb}$$

What to expect:

- First $W' \rightarrow e\nu$ event in August 2010 (5/pb)
- By November: Clear signal (30/pb)
- LHC shutdown: (1/fb)
 W' mass, BRs measured at few percent level

Z' search

$$\sigma \times BR(e^+e^-) = 5 \text{ fb}$$

$$\sigma \times BR(t\overline{t}) = 20 \text{ fb}$$

Some events with 1/fb!

Tevatron Exclusion Limit

 $W' \rightarrow e\nu$ searches at the Tevatron:

$$g_{W'}=g \Rightarrow M_{W'}>$$
 1 TeV.

- Search for isolated electron, no hard jets and missing E_T
- Demand >3 signal events with $m_t > 500 \text{ GeV}$

How to tell Left- and Righthanded W primes apart?

- Lefthanded W': Same initial and final state, interference.
- Righthanded W': No interference with W boson.

For intermediate momentum, propagators have different signs:

$$P(W',W) \sim \frac{1}{p^2 - m^2}$$

 \Rightarrow Destructive interference, LH W' peak more pronounced. (see also T.Rizzo, 0704.0235).

MadGraph Simulation: W'_L vs. W'_R

Can we see this effect? Simulate with MadGraph:

Toy model: 1 TeV W' with EW coupling strength

Plot lepton p_t distributions for 50/fb:

"Lefthanded" W':

R.H. W' / L.H. W':

⇒ Distributions show expected interference pattern.

Why Not Simulate With Pythia?

From Pythia 8 manual:

The W''^+ - implementation is less ambitious than the Z''^0 . Specifically, while indirect detection of a Z''^0 through its interference contribution is a possible discovery channel in lepton colliders, there is no equally compelling case for W'^+-/W''^+ -interference effects being of importance for discovery, and such interference has therefore not been implemented for now. Related to this, a Z''^0 could appear on its own in a new U(1) group, while W''^+ - would have to sit in a SU(2) group and thus have a Z''^0 partner that is likely to be found first. Only one process is implemented but, like for the W'^+ -, the ISR showers contain automatic matching to the W''^+ - + 1 jet matrix elements.

Two More Random Observations

Some more things we learned while doing this analysis:

• Another way to split Z' and W' masses: Larger scalar representations for breaking $SU(2)_R$.

E.g. complex scalar in RH isospin S multiplet:

$$\Rightarrow \rho_R = 1/\sqrt{2S}$$
.

- Adding more Z primes:
 - Generically: Reduces quality of EWP fit
 - Can compensate/improve by adjusting couplings
 - Requires significant fine-tuning of charges

Summary

- For the early LHC, only righthanded W primes are relevant
- The minimal model with an early W prime at the LHC is $SU(2)_L \times SU(2)_R \times U(1)_X$
- With bidoublet scalar, expect large Z'/W' mass splitting, lots of W' events and no sign of a Z'
- Interference effects with the W can possibly be used to distinguish W's from $SU(2)_L$ and $SU(2)_R$, and test our prediction